
1

Pattern Recognition Letters
journal homepage: www.elsevier.com

Deterministic Dropout for Deep Neural Networks Using Composite Random Forest

Bikash Santraa,∗∗, Angshuman Paul*,a, Dipti Prasad Mukherjeea

aElectronics and Communication Sciences Unit, Indian Statistical Institute, 203, B T Road, Kolkata, 700108, India

ABSTRACT

Dropout prevents overfitting in deep neural networks. Typical strategy of dropout involves random ter-
mination of connections irrespective of their importance. Termination blocks the propagation of class
discriminative information across the network. As a result, dropout may lead to inferior performance.
We propose a deterministic dropout where only unimportant connections are dropped ensuring prop-
agation of class discriminative information. We identify the unimportant connections using a novel
composite random forest, integrated into the network. We prove that better generalization is achieved
by terminating these unimportant connections. The proposed algorithm is useful in preventing over-
fitting in noisy datasets. The proposal is equally good for datasets with smaller number of training
examples. Experiments on several benchmark datasets show up to 8% improvement in classification
accuracy.

c© 2019 Elsevier Ltd. All rights reserved.

Keywords: Deterministic dropout, Composite random forest, Deep neural network, Regularizer

1. Introduction

Dropout (Hinton et al., 2012; Srivastava et al., 2014) is ar-
guably the most popular strategy (Cheng et al., 2019; Calvo-
Zaragoza et al., 2019) to avoid overfitting in neural networks.
However, there are several shortcomings of this technique.
First, connections to neurons are dropped out randomly. As
a result, some neurons that may have produced or propagated
class discriminative attributes may be dropped out leading to
loss of information (Zhao et al., 2019). Second, we have no
means to control dropout based on the performance of the net-
work during training. The role of a neuron-pair, connected by
a weight, is not exploited to drop out the connection between
neuron-pair. Therefore, dropout is not dependent on the com-
plex interplay of neurons between a pair of network layers.

DropConnect (Wan et al., 2013) is a generalization of
the dropout mechanism where a randomly selected subset of
weights in the network is set to zero. However, the aforemen-
tioned problems of dropout are present in DropConnect as well.

Concrete dropout (Gal et al., 2017) is a variant of dropout that
allows dropout probabilities to be tuned. Instead of performing
dropout randomly, the above approach calibrates uncertainties
that governs dropout. This helps the dropout probabilities to be

∗∗Corresponding author: Tel.: +91-33-2575 2913;
*Angshuman Paul is presently at National Institutes of Health, USA;
e-mail: bikash.santra@isical.ac.in (Bikash Santra)

tuned using gradient descent methods. Although this method
yields superior performance over the classical dropout mech-
anism (Hinton et al., 2012; Srivastava et al., 2014), the afore-
mentioned shortcomings of dropout can not be avoided in this
method.

In (LeCun et al., 1990), the authors explored the dependence
of generalization ability of a neural network on the saliency of
connections in the network. We define a novel importance mea-
sure for a connection to estimate the saliency of the connection.
The importance of a connection is evaluated by capturing the
complex interplay of neurons through a novel composite ran-
dom forest integrated inside the network. Subsequently, we
propose a deterministic dropout where only unimportant con-
nections of a network are terminated. Following (LeCun et al.,
1990), we show that the removal of unimportant connections
through the proposed deterministic dropout leads to better gen-
eralization. Thus our method helps to get rid of overfitting in a
principled manner.

The composite random forest (CRF) is constructed using at-
tribute pairs rather than individual attributes as in vanilla ran-
dom forest (Breiman, 2001). Each attribute pair is composed
of one attribute from each of the layers involved in dropout.
CRF ranks all the attribute pairs based on their importance in
determining the classification accuracy. Hence, the importance
of an attribute pair captures how the interplay between the at-
tributes affect classification accuracy. Consequently, the con-
nections of the neural network that connects the attributes of an

2

Figure 1: The overall flow of the proposed deterministic dropout.

important pair, are retained. These connections allow the prop-
agation of class discriminative information. Other connections
are dropped out. The block diagram of the proposed method is
presented in Fig. 1.

Note that similar to the classical dropout (Hinton et al., 2012;
Srivastava et al., 2014), our method also proposes dropout that
prevents the networks from relying on particular combinations
of attributes. In that sense our method preserves the basic
tenets of dropout in preventing overfitting. Our method deter-
mines important connections analytically rather than existing
approaches of dropping connections randomly. Since we re-
move unimportant connections through the proposed determin-
istic dropout, we can restrict the propagation of noise through
the network and capture the salient information from training
data. As a result, our method is well suited for noisy datasets.
We validate this claim in Section 3.

The rest of the paper is organized as follows. In Section 2, we
discuss the proposed method. The experiments and the results
are presented in Section 3. We conclude the paper with the
directions to future research in Section 4.

2. Methods

We first briefly discuss the random dropout procedure intro-
duced in (Hinton et al., 2012) and (Srivastava et al., 2014). Con-
sider a dataset X that is used as input to a neural network. Let X
be composed of N number of data points X1,X2, . . . ,XN . As-
sume that there are M attributes associated with each data point.
Hence, each input data point is an M dimensional feature vec-
tor. Now consider layer l of the neural network. Let Y[l] be the
input to the layer l and Z[l] be the output from layer l. Assume
that layer l and (l + 1) contain U and V numbers of neurons re-
spectively. Then Z[l] is the representation of N number of data
points at the output of layer l. Clearly, Z[l] contains data points
each with U attributes. Hence each data point in Z[l] is a U
dimensional feature vector.

In a neural network, consider any two consecutive layers l
and (l + 1). The output data from layer l is Z[l] and let Y[l+1] be
the input data to layer (l + 1). Then

Y[l+1] = W[l]Z[l] + b[l], (1)

where W[l] is the weight matrix connecting layers l and (l+1) and
b[l] is the bias. Let ϕ[l+1](·) be the activation function associated
with layer (l + 1). Then the output of layer (l + 1) is given by:

Z[l+1] = ϕ[l+1]
(
Y[l+1]

)
= ϕ[l+1]

(
W[l]Z[l] + b[l]

)
. (2)

In order to perform dropout, some connections between lay-
ers l and (l + 1) are to be terminated randomly. In (Srivastava
et al., 2014), the terminations of connections are performed
by creating a dropout mask D[l], where the (u, v)th element

(u ∈ [1,U] ; v ∈ [1,V]) of D[l] is D[l](u, v) = Bernouli(p). De-
pending on the value of the threshold probability p, the value of
D[l](u, v) would be either 1 or 0. Thus, dropout mask is created
randomly. With dropout, (1) would be modified as:

Y[l+1] =
(
W[l].∗D[l]

)
Z[l] + b[l], (3)

where .∗ is the Hadamard product which indicates term by term
product of two matrices. Accordingly, from (2), the output of
layer (l + 1) is:

Z[l+1] = ϕ[l+1]
((
W[l].∗D[l]

)
Z[l] + b[l]

)
. (4)

Next we discuss the motivation behind the proposed determin-
istic dropout for better generalization.

2.1. Motivation

Consider a network with mean squared classification error E.
Also assume that wuv is the weight connecting node u in layer
l to node v in layer (l + 1). Then, according to (LeCun et al.,
1990), the saliency of the connection is:

Ψ(u, v) =
∂2E
∂w2

uv
γ2(u, v), (5)

where γ(u, v) is a parameter that controls the connection. Ac-
cording to (LeCun et al., 1990), connections with high saliency
improve the generalization of the network. Hence, we define
the generalization ability of a network as:

G =
∏
∀(u,v)

Ψ̂(u, v), (6)

where Ψ̂(·) is the normalized value of Ψ(·) in [0, 1].
Assume that the importance measure for a connection de-

pends on γ(·). For some connections, we have γ(·) → 0. Con-
sequently, from (5), we have Ψ(·)→ 0 for the connections with
γ(·) → 0. If we retain the connections with γ(·) → 0, we get
the generalization measure as G1, G1 =

∏
∀(u,v)

Ψ̂(u, v).

Now suppose, we drop the connections, for which Ψ(·) → 0
(lower value of saliency). Then, the value of the generalization
measure for the network after dropping the connections with
low saliency is:

G2 =
∏

∀(u,v):Ψ̂(u,v)90

Ψ̂(u, v). (7)

Clearly, G2 > G1. This indicates that dropping connections
with low importance (and consequently low saliency) leads to
better generalization. Hence, overfitting can be avoided by
dropping connections with low importance. However, dropout
method randomly drops connections without considering its

3

Figure 2: Deterministic dropout using composite random forest in a neural network. Blue straight lines (−): connections between nodes, f [l]
i : the output from node

i at the lth layer (referred to as attribute in the text), ϕ[l+1]: activation function at the (l + 1)th layer, W[l]: weight matrix at the lth layer.

importance. Next we present an analysis from the perspective
of information-propagation on why we should drop unimpor-
tant connections.

Why Drop Unimportant Connections: Consider any two con-
secutive layers l and (l + 1) of a neural network. As dis-
cussed earlier, for each data point, Z[l] (the output from layer
l) is a U dimensional feature vector. Assume Z[l] provides
the feature vector F [l] with U attributes f [l]

1 , f [l]
2 , . . . , f [l]

U i.e.
F [l] =

{
f [l]
1 , f [l]

2 , . . . , f [l]
U

}
. Similarly, assume that Z[l+1] defines

the feature vector F [l+1] with V attributes f [l+1]
1 , f [l+1]

2 , . . . , f [l+1]
V

i.e. F [l+1] =
{
f [l+1]
1 , f [l+1]

2 , . . . , f [l+1]
V

}
. Since the connections be-

tween the layers are exhaustive, each attribute in layer (l + 1) is
composed of the contributions from all the attributes in layer l.

However, in most of the practical scenarios, there will be
several attributes in the output of layer l that do not contain
class discriminative information (these attributes are termed as
‘unimportant’ attributes). As a result, there might be some at-
tributes in the output of layer (l+1) that also do not possess class
discriminative information. This may in turn give rise to unim-
portant attributes in layer (l + 2) and so on. Thus, through these
unimportant attributes, there might be a propagation of unim-
portant information till the last layer. This situation especially
occurs in the cases of noisy datasets. Presence of unimportant
attributes at the final layer may negatively affect the classifica-
tion performance of the network. So, the propagation of unim-
portant information (through unimportant attributes) should be
stopped as soon as it is detected.

We have already argued that each attribute in layer (l + 1) is
composed of the contributions from all the attributes in layer
l. So, in order to find and drop an unimportant connection, we
need to look into the interplay between an attribute of layer l
and an attribute of layer (l+1). Hence, we have to find a method
to look into the importance of attribute pairs composed of one
attribute from layer l and one attribute from layer (l + 1). We
design a composite random forest to take care of this problem.
Once the unimportant connections are found, we drop those
connections. A schematic of our method is presented in Fig.
2. Next we present the construction of the proposed composite
random forest.

2.2. Composite Random Forest

Random forest (RF) can find the importance of different at-
tributes in the original attribute space in a supervised manner
(Paul et al., 2015; Breiman, 2001) exploiting the role of differ-
ent attributes in classification. This is an advantage compared
to other popular unsupervised techniques like principal compo-
nent analysis (PCA) (Wold et al., 1987) and linear discriminant
analysis (LDA) (Xanthopoulos et al., 2013).

In his original paper (Breiman, 2001), Breiman showed how
to calculate the importance of different attributes individually
using RF. It is also possible to find the importance of linear
combinations of attributes. Nevertheless, the task of finding
importance of pair of attributes is not straightforward. We need
multivariate decision trees (Brodley and Utgoff, 1995) for this
task. Typical multivariate decision trees take a subset of at-
tributes and find an optimal separating hyperplane in the at-
tribute subspace (Menze et al., 2011).

But our problem is different. We have a number of attribute
pairs. In order to find importance of each such pair using RF,
we need to construct an RF in which the nodes are split using
a pair of the attributes. These require finding the winner at-
tribute pair (from a randomly selected subset of attribute pairs)
just as random forest finds an individual winner attribute (from
a randomly selected subset of attributes). We also need to find
a pair of values (one value corresponding to each attribute of
the winner attribute pair) based on which the node will be split.
For this, we design, what we call a ‘composite random forest’.
Before we discuss the construction of the composite random
forest, let us first look at how nodes in the composite random
forest will be split. This involves three steps: construction of
composite attributes, finding the winner attribute pair and find-
ing the split point. These steps are discussed next.
Construction of Composite Attributes: As we have seen,
each data point at the output of layer l is a U dimensional fea-
ture vector F [l]. Similarly, we have a V dimensional feature
vector F [l+1] at the output of layer (l + 1). Note that Z[l] (see
(1)) contains N number of data points. Same is the number of
data points for Z[l+1].

Using the attributes from layers l and (l + 1), we first con-
struct a composite set of attributes denoted as F [l,(l+1)] by taking

4

Cartesian product of F [l] and F [l+1],

F [l,(l+1)] = F [l] × F [l+1]

=
{
(u, v) | u ∈ F [l] and v ∈ F [l+1]

}
. (8)

Next we grow a random forest using the composite attributes.
Unlike the classical random forest (Breiman, 2001), each node
in the proposed composite random forest is split using one of
the composite attributes from F [l,(l+1)]. Recall that each ele-
ment of the set F [l,(l+1)] is actually an attribute pair. Hence, to
grow the forest, we need to find the winner attribute pair from
F [l,(l+1)] for each node. Just like the random forest algorithm
(Breiman, 2001), we first randomly select M′ number of at-
tribute pairs from F [l,(l+1)]. Out of those M′ number of attribute
pairs, we have to select the winner in each node. The process
of finding the winner is discussed next.
Finding the Winner Attribute Pair: Each pair of attributes
(u, v) obtained in (8) forms a 2D attribute subspace. If we plot
all the data points in any such subspace, the data points form
clusters. We use cluster properties to select the winner attribute
pair in a node. Different methods (Zhao et al., 2017, 2018)
have been proposed for defining the quality of clusters. We take
the following strategy involving the clusters to find the winner
attribute pair in a node.

Recall that in each node, we first randomly select M′ attribute
pairs. Hence, for each node, M′ number of such subspaces are
possible. We plot data points of that node in all of those sub-
spaces. Consider any subspace constructed by an attribute pair.
Assume the data points of class c form the cth cluster in that
subspace. Let the corresponding cluster center be α(c) and ri(c)
be the distance of the ith data point of cluster c from its center.
If the cluster contains N(c) number of data points, the average

radius of cluster c is r(c) =

∑
∀i∈c

ri(c)

N(c) . Similarly for the data points
of class c′, we have cluster center α(c′) and radius r(c′). Then
we define the separability between the above two clusters as:

S(c, c′) =
‖α(c) − α(c′)‖

r(c) + r(c′)
, (9)

where ‖·‖ indicates the Euclidean distance. The higher the value
of S(·), the better the separation between the two clusters. Then
the cluster separability index in the subspace (formed by the
attribute pair (u, v), u ∈ F [l] and v ∈ F [l+1]) is defined as the
sum of separabilities between each pair of clusters:

S(u, v) =
∑
∀(c,c′)

S(c, c′). (10)

It is quite obvious that the higher value of cluster separabil-
ity index indicates better separability between the clusters in
a subspace. This, in turn, means that data points of different
classes are better-separated in a subspace with the higher value
of cluster separability index. Hence, the best subspace is the
one with the highest value of cluster separability index. The at-
tribute pair that construct the best subspace is considered to be
the winner attribute pair to split the node. Once the winner is
found, the next task is to determine the threshold values of the
pair of attributes on which the split will be performed. The pair
of threshold values is termed as ‘split point’.

Finding the Split Point: We assign weights to each cluster
depending on its radius and the number of data points in it. Let
N(c) be the number of data points in cluster c. We define the
weight of the cluster corresponding to the data points of class c
as: m(c) =

N(c)
r(c) .

In order to find the split point, we calculate the cluster
weights in the subspace constructed by the winner attribute pair.
The weighted centroid of the subspace is obtained using the
cluster weights as:

α =

∑
∀ c

m(c)α(c)

 / ∑
∀ c

m(c)

 . (11)

The weighted centroid is situated closer to the denser clusters
(clusters with higher weights) and away from the scattered clus-
ters (clusters with lower weights). Hence, the weighted centroid
provides good partition of data points. So, we take the weighted
centroid as the split point to split the node under consideration.
Next we present the complete algorithm for the composite ran-
dom forest.
Composite Random Forest Algorithm: In order to construct
the composite random forest, we first find the composite feature
vectors (following (8)) for all the training data points. Next, fol-
lowing (Breiman, 2001), we randomly choose N training data
points with replacement from the training dataset to construct
the bootstrap sample for growing a particular tree. Then at each
node of the tree, we find the winner attribute pair based on the
cluster separability index as presented in (10). Once the win-
ner attribute is found, the split point is determined using (11).
We split the node to create left child and right child nodes. The
node splitting is continued until the number of data points in a
node goes below a preset threshold. Repeating the above pro-
cess for B trees in the composite random forest. We use this
forest to find the importance of different attribute pairs.

Algorithm 1 Composite Random Forest
Input: Number of trees B
Output: Global importance of attribute pairs γg(u, v)

1: procedure INITIALIZE (F [l,(l+1)])
2: Given two sets of attributes F [l] and F [l+1], find the set

of composite attributes F [l,(l+1)] using (8).
3: Take k = 1.
4: end procedure
5: while k ≤ B do
6: while Nodes are left to be split do
7: Go to the next node to be split.
8: Select a random subset of attribute pairs from

F[l,(l+1)].
9: From the random subset of attribute pairs, find the

winner attribute pair by maximizing (10).
10: Determine the split point in the winner attribute pair

using (11).
11: Based on the split point, create the left and the right

child nodes.
12: end while
13: end while

5

2.3. Finding the Importance of Attribute Pairs
The importance of different attribute pairs depends on two

components. The first one is the local importance of an attribute
pair inside a tree. The second one is the importance of the tree
with respect to the entire forest.
Local Importance of an Attribute Pair: Consider the kth

tree Θk of the composite random forest. Let an attribute pair
(f [l]

u , f [l+1]
v) be selected in the random subset of attributes for

Ls number of nodes. Out of that, Lw times the attribute pair
becomes the winner. Assume that in a node i of the kth tree,
the attribute pair (f [l]

u , f [l+1]
v) has been selected in the random

subset of attributes. Also, let Si(u, v) be the cluster separability
index in the attribute subspace constructed by the attribute pair
(f [l]

u , f [l+1]
v). Notably a cluster contains data of same classes.

Further, assume that (f [l]
u∗ , f [l+1]

v∗) is the winner attribute pair and
Si(u∗, v∗) is the cluster separability index in the attribute sub-
space constructed by the winner attribute pair. Then we define
the local importance of the attribute pair (f [l]

u , f [l+1]
v) in tree Θk:

γk(u, v) =

 Ls∑
i=1

Si(u, v)

Si(u∗, v∗)

 /Ls. (12)

The above equation indicates, given the random selection,
how successfully the attribute pair (f [l]

u , f [l+1]
v) became the win-

ner attribute pair in different nodes. If the value of γk(u, v) = 1,
it indicates that every time the attribute pair (f [l]

u , f [l+1]
v) was se-

lected randomly in a node, the pair became the winner attribute
pair. On the contrary γk(u, v) = 0 indicates that the attribute
pair could not become the winner in any node. So, the higher
the value of γk(u, v), the more the importance of the attribute
pair in tree Θk. If an attribute pair is not at all selected ran-
domly for any node, we assign its local importance to be 1 to
give the attribute pair a fair chance of being selected next.

Suppose some attribute pair has high local importance in a
tree. But the classification performance of that tree is poor. So,
in the context of the entire forest, that particular tree would be
considered poor. Consequently, the attribute pairs that had high
importance in that tree are actually not important with respect
to the overall classification performance by the forest. So, while
calculating the importance of the attribute pairs, we need to find
the weights of individual trees as well. Next we discuss how to
find the weights of individual trees and consequently find the
global importance of an attribute pair.
Global Importance of an Attribute Pair: In order to calculate
the global importance, we first need to find the weights of the
individual trees. We calculate the weights of the individual trees
β(k) following (Paul et al., 2015). The global importance of the
attribute pair (f [l]

u , f [l+1]
v) is:

γg(u, v) =

B∑
k=1

γk(u, v)β(k). (13)

It is clear that an attribute pair with high value of γg(·) takes
significant role in accurate classification. Hence, based on the
global importance of attribute pairs, next we design the dropout
mask for the neural network. Since the dropout mask is de-
signed deterministically, this dropout mechanism is termed as
deterministic dropout. The procedure of constructing compos-
ite random forest is presented in Algorithm 1.

2.4. Deterministic Dropout

Consider any two consecutive layers l and (l + 1), in between
which we have to perform the dropout. We construct a compos-
ite random forest by taking the outputs from layers l and (l + 1).
Let µ be the mean of global importance of the attribute pairs
and σ be the standard deviation of the global importance.

Suppose we find that an attribute pair has low global impor-
tance. Then we drop the connection that connects the two at-
tributes of that attribute pair. Let there be a connection from
f [l]
u in layer l to f [l+1]

v in layer (l + 1). Assume that the corre-
sponding mask value is D[l](u, v). If we find that γg(u, v) (the
global importance of attribute pair (f (l)

u , f [l+1]
v)) is low, we drop

the connection from f (l)
u in layer l to f [l+1]

v in layer (l + 1). We
implement this dropout by making D[l](u, v) = 0. If we do not
need to drop the connection, we make D[l](u, v) = 1. In particu-
lar, if γg(u, v) < (µ− κσ) (where κ is a constant), we say that the
corresponding attribute pair has low importance. Subsequently,
we drop the corresponding connection. Hence

D[l](u, v) =

0 if γg(u, v) < (µ − κσ),
1 otherwise.

(14)

Once the dropout mask is computed, we perform dropout us-
ing (3). Thus in our approach, dropping of unimportant con-
nections result in better generalization of the network following
(7). Note that at the time of testing, we use all the weights with
their final values obtained during training. Next we discuss the
performance of the proposed method.

3. Experiments & Results

Datasets & Parameters: We evaluate the performance of the
proposed method from various different aspects. First, we ex-
amine the efficacy of the proposed method in noisy datasets
with smaller number of training examples (refer Section 3.1).
We use several noisy variants of MNIST (Variants, 2016) for
this purpose. Second, we look into the effect of size of train-
ing data on our algorithm (refer Section 3.2). Next we evaluate
the usefulness of the proposed method in benchmark datasets
CIFAR-10 (Krizhevsky and Hinton, 2009), SVHN (Netzer
et al., 2011) and Fashion MNIST (Xiao et al., 2017).

Finally, we use GroZi-120 (Merler et al., 2007) and Grocery
Products (George and Floerkemeier, 2014) datasets for our ex-
periments (refer Section 3.4). These datasets contain images of
retail products. The training data in the above datasets consist
of the images of individual products captured under controlled
studio environment (Merler et al., 2007). On the contrary, the
test data contains images of products which are cropped from
images of racks captured in uncontrolled supermarket environ-
ment (Merler et al., 2007). Thus the training and the test data are
acquired in different imaging environments. Furthermore, only
a small number (typically 1 to 14) of training data are available
per class for the above datasets. Hence the generalization ca-
pability of the proposed approach can be evaluated through the
results on these retail product datasets. For the random forest,
we take B = 100 trees. The value of κ in (14) is set to 0.5
The experiment for choice of κ is detailed in Appendix A. We

6

(a) (b) (c)

Figure 3: (a): Classification accuracies for MNIST and variants of MNIST using DNN1. (b): Percentage of connections (w.r.t. total number of connections) dropped
at each epoch for MNIST dataset using the proposed method. (c): Classification accuracies in MNIST dataset with increasing size of training subsets.

stop the splitting of a node when the number of data points in
the node is less than 5. Experiments show that making nodes
with smaller number of data points only increases computa-
tional burden without significantly improving the classification
performance. Following (Breiman, 2001), we take M′ =

√
M,

where M is the total number of composite attributes.
Experimental Protocols: For our experiments, we train our
networks for 250 epochs using mini-batch stochastic gradient
descent with mini-batch size of 32 and momentum of 0.9. The
learning rate is initialized at 0.01 and decreased by 10 times
at every 25 epochs. For each dataset, we report the mean of
the classification accuracies obtained by the five independent
networks (Wan et al., 2013) which are trained using random
permutations of the training data.
Competing Methods: We compare our method with a number
of well-known regularization techniques such as dropout (Hin-
ton et al., 2012), DropConnect (Wan et al., 2013) (abbreviated
as DConnect) and concrete dropout (Gal et al., 2017) (abbrevi-
ated as Concrete). For each of the competing dropout methods,
the dropout probability is set to 0.5 following (Krizhevsky et al.,
2012). We also evaluate the performance of the networks with-
out dropout (abbreviated as No-Drop). For all the competing
approaches, we follow the same experimental protocols. Next
we discuss the comparative results.

3.1. Results on Noisy Data: Variants of MNIST
We take several variants of MNIST (Variants, 2016). The

variants are: MNIST-RandB (MNIST corrupted by random
background), MNIST-ImgB (MNIST corrupted by background
image) and MNIST-RotB (rotated MNIST with background im-
ages). The original MNIST (LeCun et al., 1998) dataset con-
tains 60000 training and 10000 test examples. Whereas all
of the above variants of MNIST are noisy and small (contain
12000 train and 50000 test images). The details of the noisy
datasets is given in (Variants, 2016). For our experiments on
MNIST (LeCun et al., 1998) and variants of MNIST (Variants,
2016), we take two different networks. The first one is a fully
connected deep neural net (abbreviated as DNN1). The sec-
ond network is a convolutional neural network (abbreviated as
CNN1). In the following paragraphs, we describe the networks
and analyze the results obtained using these networks.
Architecture of DNN1: For this network, the input training
and test images are normalized to fit into 20 × 20 pixels. The
first layer is composed of 800 nodes (followed by an activation)

and takes the image pixels as input. This layer is followed by
a second fully connected layer of 800 nodes. The output of
the second layer (after activation) is fed to a ten-class softmax
classification layer. We implement the proposed deterministic
dropout mechanism (and also the competing mechanisms) in
between the first and second fully connected layers. We also
use these dropout techniques between the second layer and the
final softmax layer.
Analysis of Results Using DNN1: The classification accura-
cies using different dropout mechanisms and without dropout
have been presented in Fig. 3(a). Notice that the proposed
deterministic dropout outperforms its competitors in all of
the above datasets. However, the margin of improvement of
the proposed method is more significant in the noisy datasets
MNIST-RandB, MNIST-ImgB and MNIST-RotB by 2.82%,
4.19% and 8.94% respectively. Recall that each of the MNIST-
RandB, MNIST-ImgB and MNIST-RotB datasets have only
12000 training example (in contrast to 60000 training examples
in original MNIST). Also note that, all of the above datasets
have signal to noise ratio (SNR) < −5 dB with respect to the
original MNIST dataset (negative SNR indicates more noise
than signal). Hence we conclude that our method outperforms
its competitors by significant margin in case of noisy and small
datasets.

Next we look into the number of connections dropped across
different epochs. We plot the average numbers of dropped
connections over different epochs at fully connected layer 1
and layer 2 in Fig. 3(b). Notice that the number of connec-
tions dropped at each iteration is not the same across different
epochs. Since the total number of dropped connections vary
across the epochs, we can say that same connections are not
dropped at each epoch. Consequently, a different network is
created at every epoch. Thus in our method, we are able to
create an ensemble of networks which is the primary goal of
dropout (Hinton et al., 2012; Srivastava et al., 2014). Further,
since identical connections are not dropped in each epoch, we
can conclude that the improvement in performance does not
arise from the pruning of specific connections. Recall that the
connections to be dropped in our method are determined by
the importance of the connections as described in Section 2.4.
Therefore, we can conclude that the performance improvement
in our method is due to the quality of connections and not due
to the number of the dropped connections. Next we look into
the performance of the proposed deterministic dropout in a con-

7

Table 1: Mean classification accuracies (%) in variants of MNIST (using CNN1), benchmark (using CNN2) and retail product (using CNN3) datasets

Methods
Variants of MNIST Datasets Benchmark Datasets Retail Product Datasets

MNIST MNIST
-RandB

MNIST
-ImgB

MNIST
-RotB CIFAR-10 SVHN

Fashion
MNIST GroZi Grocery

No-Drop 99.08 90.28 85.12 45.23 74.69 89.11 88.72 41.92 77.22
Dropout (Hinton et al., 2012) 99.04 91.65 86.18 48.69 75.36 90.30 90.03 41.30 78.37
DConnect (Wan et al., 2013) 99.10 92.82 88.20 49.92 74.92 90.55 89.66 41.66 78.30
Concrete (Gal et al., 2017) 99.06 92.53 89.63 49.88 75.27 90.40 90.10 42.36 78.02
Proposed 99.14 95.22 92.48 54.48 76.35 91.61 91.13 45.15 81.62

volutional neural network (CNN1) for MNIST dataset.
Architecture of CNN1: For this network, we take 24×24 input
images during training and testing phases. Our network con-
sists of a convolution layer of 32 activation maps. Each map
is obtained using a 3 × 3 non-overlapping convolution mask.
The convolution layer is followed by a relu activation layer and
then a max pooling layer with 2 × 2 non-overlapping kernels.
Then we have a second convolution layer of 64 activation maps
using 5 × 5 overlapping convolution kernels. We place a relu
activation layer and 2 × 2 overlapping max pooling layer af-
ter the second convolution layer. This is followed by a fully
connected layer of 150 nodes where we use the proposed and
competing dropout mechanisms. Finally, there is a log softmax
output layer containing ten nodes each corresponding to a class
label.
Analysis of Results Using CNN1: The classification accura-
cies using CNN1 are presented in Table 1. Notice that the pro-
posed deterministic dropout achieves better classification accu-
racies compared to the other competing methods. As expected,
the margin of improvement for our method in the noisy variant
of MNIST is more significant compared to the improvement
in MNIST. Thus the usefulness of the proposed deterministic
dropout for noisy and small datasets is further justified even for
CNN.

3.2. Effect of the Size of Training Dataset

We take the original MNIST dataset that contains 60000
training examples. We train CNN1 with a smaller subset
of 10000 examples of training data and evaluate the perfor-
mance of the network using classical dropout and the proposed
method. We repeat this experiment with gradually increasing
size of training subsets. In Fig. 3(c), we plot the classification
accuracies of dropout and proposed method as the training data
subset size increases. Notice that the relative improvement of
performance of the proposed method compared to the classical
dropout is more significant for smaller training datasets.

3.3. Results on Benchmark Datasets

Next we evaluate the efficacy of the proposed method in
benchmark datasets CIFAR-10, SVHN and Fashion MNIST.
For this purpose, we use a convolutional neural network
(CNN2) whose architecture is presented next.
Architecture of CNN2: Since CIFAR-10 & SVHN datasets
contain 32 × 32 × 3 RGB images (28 × 28 grayscale images
for Fashion MNIST), the first convolution layer of CNN2 is de-
signed using a 3 × 3 × 3 convolution mask. There are three
convolution layers (each followed by a relu and a max pooling

layer) in this network with 32, 64 and 128 activation maps re-
spectively. The third convolution layer is followed by two fully
connected layers of 80 and 10 nodes respectively in between
which we apply different dropout mechanisms.
Results & Analysis: For our experiments, we follow the
same protocol as the one we have followed for experiments
on MNIST. The comparative performances of different dropout
methods for benchmark datasets are presented in Table 1.
Notice that compared to the other approaches, the proposed
method achieves better classification accuracies in CIFAR-10,
SVHN and fashion MNIST datasets.

3.4. Results on Retail Product Datasets
For the two retail product datasets (GroZi-120 (Merler et al.,

2007) and Grocery Products (Grocery) (George and Floerke-
meier, 2014)), we show the performance of the proposed
method using a convolutional neural network (CNN3). We first
present the architecture of the network followed by experimen-
tal results.
Architecture of CNN3: The architecture of CNN3 is similar
to that of AlexNet (Krizhevsky et al., 2012) except the output
layer. The output layer of CNN3 contains as many nodes as
the number of classes in the dataset under consideration. The
weights of CNN3 network (except the output layer) are initial-
ized with that of pre-trained AlexNet. Like AlexNet, in the
architecture of CNN3, classical dropout (Hinton et al., 2012) is
applied in the first two fully connected layers. We apply the
proposed deterministic dropout and the other competing meth-
ods in CNN3 as a replacement of the classical dropout.
Results & Analysis: All the images of GroZi-120 and Grocery
Products datasets are resized to 224×224×3. In these datasets,
the number of training images per class is in between 1 and
14. Hence, we perform data augmentation following (Perez
and Wang, 2017). For each class, almost ∼ 104 train images
are augmented in order to train CNN3. The classification accu-
racies for different retail product datasets are presented in Table
1. It can be seen that the proposed method outperforms all its
competitors in both the datasets. In particular, the percentage of
improvement in classification accuracy by the proposed method
(compared to its closest competitor) is 6.5% for the GroZi-120
dataset and 4.1% for the Grocery Products dataset. The supe-
riority in the performance of the proposed method is due to its
capability of better generalization. As a result, although the
training data and the test data are captured in different environ-
ments, our method outperforms its competitors.

3.5. Notes on Training Time
The training of the proposed deterministic dropout involves

construction of a random forest. This causes increase in train-

8

ing time. As mentioned in Section 3, we take 100 trees for
growing a random forest in our implementation. The average
depth of the trees in the forest is 39. The construction of a
decision tree of depth 39 takes only 1.09s. Our model is imple-
mented in python and tested in a computing system with 64GB
RAM, Intel Core i7-7700K CPU @ 4.2GHz×8 and GeForce
GTX TITAN 6GB GPU. Thus, in a fully parallel computing
architecture, the construction of random forest also takes about
1s in each epoch. This marginal increase in training time comes
with the benefit of significantly improved classification perfor-
mances, as evident from Fig. 3 and Table 1. Further, the test
time in the proposed method is not affected since we do not
construct random forest during test. Therefore we can say that
the proposed method does not add computational delays at test
time.

4. Conclusions & Future Work
We propose a method that deterministically identify and ter-

minate the unimportant connections in a neural network. A
composite random forest is used for finding the unimportant
connections. Results on a number of different datasets establish
the superiority of the proposed method. The performance of our
method is found to be superior in noisy and smaller datasets. In
the future, we would aim to generalize the deterministic dropout
strategy over the entire network including the convolution lay-
ers instead of specific fully connected layers.

References

Breiman, L., 2001. Random forests. Machine learning 45, 5–32.
Brodley, C.E., Utgoff, P.E., 1995. Multivariate decision trees. Machine learning

19, 45–77.
Calvo-Zaragoza, J., Toselli, A.H., Vidal, E., 2019. Handwritten music recog-

nition for mensural notation with convolutional recurrent neural networks.
Pattern Recognition Letters URL: http://www.sciencedirect.
com/science/article/pii/S0167865519302338, doi:https:
//doi.org/10.1016/j.patrec.2019.08.021.

Cheng, E.J., Chou, K.P., Rajora, S., Jin, B.H., Tanveer, M., Lin, C.T., Young,
K.Y., Lin, W.C., Prasad, M., 2019. Deep sparse representation classifier for
facial recognition and detection system. Pattern Recognition Letters 125,
71–77.

Gal, Y., Hron, J., Kendall, A., 2017. Concrete dropout, in: Advances in Neural
Information Processing Systems, pp. 3581–3590.

George, M., Floerkemeier, C., 2014. Recognizing products: A per-exemplar
multi-label image classification approach, in: European Conference on
Computer Vision, Springer. pp. 440–455.

Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.,
2012. Improving neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580 .

Krizhevsky, A., Hinton, G., 2009. Learning multiple layers of features from
tiny images .

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with
deep convolutional neural networks, in: Advances in neural information pro-
cessing systems, pp. 1097–1105.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning
applied to document recognition. Proceedings of the IEEE 86, 2278–2324.

LeCun, Y., Denker, J.S., Solla, S.A., 1990. Optimal brain damage, in: Advances
in neural information processing systems, pp. 598–605.

Menze, B.H., Kelm, B.M., Splitthoff, D.N., Koethe, U., Hamprecht, F.A., 2011.
On oblique random forests, in: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, Springer. pp. 453–469.

Merler, M., Galleguillos, C., Belongie, S., 2007. Recognizing groceries in situ
using in vitro training data, in: Computer Vision and Pattern Recognition,
2007. CVPR’07. IEEE Conference on, IEEE. pp. 1–8.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y., 2011. Read-
ing digits in natural images with unsupervised feature learning, in: NIPS
workshop on deep learning and unsupervised feature learning, p. 5.

Paul, A., Dey, A., Mukherjee, D.P., Sivaswamy, J., Tourani, V., 2015. Regen-
erative random forest with automatic feature selection to detect mitosis in
histopathological breast cancer images, in: Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2015. Springer, pp. 94–102.

Perez, L., Wang, J., 2017. The effectiveness of data augmentation in image
classification using deep learning. arXiv preprint arXiv:1712.04621 .

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.,
2014. Dropout: A simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research 15, 1929–1958.

Variants, M., 2016. Mnist noisy variants. http://www.iro.
umontreal.ca/˜lisa/twiki/bin/view.cgi/Public/
DeepVsShallowComparisonICML2007.

Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., Fergus, R., 2013. Regularization
of neural networks using dropconnect, in: International Conference on Ma-
chine Learning, pp. 1058–1066.

Wold, S., Esbensen, K., Geladi, P., 1987. Principal component analysis.
Chemometrics and intelligent laboratory systems 2, 37–52.

Xanthopoulos, P., Pardalos, P.M., Trafalis, T.B., 2013. Linear discriminant
analysis, in: Robust data mining. Springer, pp. 27–33.

Xiao, H., Rasul, K., Vollgraf, R., 2017. Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms. arXiv preprint
arXiv:1708.07747 .

Zhao, C., Chen, K., Wei, Z., Chen, Y., Miao, D., Wang, W., 2019. Multilevel
triplet deep learning model for person re-identification. Pattern Recogni-
tion Letters 117, 161 – 168. URL: http://www.sciencedirect.
com/science/article/pii/S0167865518301491, doi:https:
//doi.org/10.1016/j.patrec.2018.04.029.

Zhao, C., Wang, X., Miao, D., Wang, H., Zheng, W., Xu, Y., Zhang, D., 2018.
Maximal granularity structure and generalized multi-view discriminant anal-
ysis for person re-identification. Pattern Recognition 79, 79–96.

Zhao, C., Wang, X., Wong, W.K., Zheng, W., Yang, J., Miao, D., 2017. Multiple
metric learning based on bar-shape descriptor for person re-identification.
Pattern Recognition 71, 218–234.

Appendix A. Choice of κ

In order to choose the value of κ, we evaluate the classi-
fication performances by varying κ. The classification per-
formances of different networks, experimented on various
datasets, by varying κ in the proposed method are presented
in Table A.2. Notice that in most cases, we get the best classifi-
cation accuracy with κ = 0.5. Therefore, we choose κ = 0.5 for
our experiments.

Table A.2: Classification accuracies of different networks on various datasets
by varying κ

Datasets
κ

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

DNN1 on MNIST 98.52 98.78 98.80 98.73 98.72 98.67 98.65 98.65 98.63

DNN1 on MNIST-RandB 94.30 94.60 94.60 94.62 94.57 94.50 94.52 94.55 94.55

DNN1 on MNIST-ImgB 91.39 91.46 91.48 91.46 91.45 91.45 91.30 91.35 91.28

DNN1 on MNIST-Rot 90.10 90.29 90.30 90.21 90.24 90.26 90.26 90.25 90.26

DNN1 on MNIST-RotB 53.40 53.20 53.60 53.30 53.25 53.35 53.20 53.40 53.25

CNN1 on MNIST 99.10 99.12 99.14 99.00 99.09 99.12 99.10 99.11 99.13

CNN1 on MNIST-RandB 95.13 95.15 95.22 95.21 95.20 95.10 95.19 95.20 95.17

CNN1 on MNIST-ImgB 92.49 92.47 92.48 92.48 92.49 92.40 92.38 92.36 92.30

CNN1 on MNIST-RotB 54.19 54.34 54.48 54.36 54.40 54.30 54.32 54.35 54.35

CNN2 on CIFAR 10 76.25 76.35 76.35 76.35 76.29 76.25 76.28 76.25 76.00

CNN2 on SVHN 91.41 91.53 91.61 91.60 91.60 91.50 91.41 91.14 90.89

CNN2 on Fashion MNIST 90.90 90.99 91.13 90.40 90.49 90.10 90.30 90.60 90.10

CNN3 on GroZi 44.15 44.20 45.15 45.00 44.45 44.00 44.20 44.15 43.45

CNN3 on Grocery 80.00 80.10 81.62 81.40 81.00 80.94 80.90 80.60 79.95

